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AnsTRACT. Recursive formulas for the numerical evaluation of the real convolution integral
are derived for the case in whieh the impulse response is given analytically. These formulas
require considerably less computsation time and memory space than the general time series
formulas and can be effectively applied for digital simulation of continuous physical systems.
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1. Iniroduciion

The real convolution integral is a valuable mathematical tool for simulating eontrol
systems and electrical networks on a digital eomputer (1, 4]. For a linear system the
convolution integral describes, via the impulse response w(t), the relationship be-
tween the input signal z(¢) and the cutput signal y(¢£). The convolution integral is
written as

ot) = [ aleyit ~ 7) dr )

0
with
w(t) =0 fort < 0.
This integral can be approximated by the following time series
y(0) =0

and
y(n-Af) = y. = Af gb,m.w._,. forn > 1 (2)

where 2. is the mth sample of input signal z({), wa—n I3 the (n — m)-th sample
of the impulse response w(¢), and Af is the sampling interval. The coefficients b,
depend on the interpolation selected.

There are two major disadvantages to evaluating the integral by eq. (2): (2)
the number of arithmetic operations increases with time; (b) all past values of z(t)
and w(¢) must be known.

If the impulse response w(t) is available in the form
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54 H. H. TRAUROT

F
wil) = Y w.it) {3a)
=1 i

and
w.(t) = B, exp (—C)t™ cos (B2 + Fo), (3

where D, is an integer, then simple recursion formulas for the calculation of i
output signal y(n-Af) can be derived. Because the formulas are short, and aks
because the number of arithmetic operations involved is time-independent, the
computer requirements for storage space and running time are less than thosed
egs. (2).

In most instances the impulse response w(t) is cither obtained easily from transfy
function tables [2, 3] in form (3) or given by measured data. In the latter case, forn
(3) can be obtained by curve fitting. Therefore we assume w(t) to have form (3).

9. Derivation of Recursion Formulas

We can derive recursion formulas for the general impulse response w(t) of (3) mox
easily if we first consider two special cases of w(#). The first special case considerel
is the situation most frequently encountered in actual practice.

Case 1. Suppose D, of eq. (3b) is zero, i.e. no multiple poles.

Case 2. Suppose C,, E,, and F, of eq. (3b) are zero, i.c. multiple integration

To further simplify the derivation of the recursion formulas, we separaie b
previous samples from the current samples. Let

Yo = _E;ym (4]
with
yr.ﬁ o P:ﬂ —i'_ Q'val {'.ihli
and
{'?5 = Af baw.e !-!1:-'
(B, cos Fy, forD, =0,
Wy = ‘; i i
0 for D, # 0, 4
where
uw—1 )
P = At Z O Wy n—m (de!
fot ]

contains all previous samples. When linear interpolation is applied the coefficier
b, has the value 3, but when quadratic interpolation is applied b, has the value}
for odd n amd % for even n.

21 RecursioN Formuras For Case 1
If we assume that the time intervals At are of the same length, then

w,(ndl) = wa = B, exp (—C.nat) cos (E.nat + F.). (3!
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Recursive Formulas for the Evaluation of the Convolulion Integral 65

We also define
W.(nAl) = ., = B, exp ( ~C.nAf) sin (Enat + F,). (5b)

Using the trigonometric addition theorem for cosine and sine and the substitu-
tions:

er = exp {_—'Cv‘lr:l: (E‘d}
St-:l. = CO03 {E:M)r {ﬁh‘i
7., = sin (E,Al), (6c)

we can write for the next time interval £ = (n 4 1)At:
Wy a1 = RaB, exp (—=CnAl) (S, cos (EanAt + F,) — Tysin (EanAt + F)) (7)
Shifting the time index one unit and using eq. (5}, we obtain
Wen = R SaWy 1 — Tathsna), (8a)
and, similarly,
Won = R Satena + Tulty,na). (Sb)

Let us now approximate the convolution by both linear and quadratie interpola-
tions.

a. Linear approximation of the corvolution tntegral. The linear approximation
(trapezoidal rule) for P,, in eq. (4e) is

a—1

Pkﬂ_ = l"s! abﬂmwhn—-m {gﬂ}
with

(0.5 form =0,

o = 4

El form=12---,n— 1.

S8imilarly, we ean define P,, with the same coefficients b., :
=1
P:-n = At Zﬂbﬂmﬁﬂﬂ.ﬁ—ﬂ- B (gh}

Now, the objective is to express P., by the previous value (P, ._,) and a corree-
tion. For this purpose we write

u—2
Pt,nnl. = Af Eﬁr bmxnwr.ﬂ—l—m y (1{]3}
and, similarly,
5 a—2
Pops= Al D buZuilyntm {10b)
=0

with
[0.5 form =0,
bm = 1

1 form=12 ---,n—2

L1
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66 H. H. TR_Q_UEm-E

If eq. (8a) is introduced into eq. (9a), using eq. (10) we obtain
P.. = Bu{8uPenat — TaPona) + AleEar, (g
and, similarly,
B,, = Rul(SuPsas + TePos) + AlbeTn . (11}

o minimize the number of multiplications during the iterations, the followi,
time-independent parameters can be calculated at the beginning of the iterations -

U = Bada (12,
o = Huitn (12
W, = Alwa (12¢)
W = Alfa (124
Q.. = Athyw, with by = 0.5 (1%

where
w,: = B, exp (—C,At) cos (E.Af + F,)
#,: = B,exp (—C.At) sin (E,Af + F,)
we = B,cos F,

Equation (3b) describes an impulse response w,(t) which corresponds to a Laplss
transfer function W,(g) containing a single complex pole. The pole becomes a 1
number when the oseillatory portion of eq. (3b) disappears, i.e. when E, = F, =1
In this case, we obtain from eq. (6) that S.. = 1 and T.: = 0 and from eqgs. (1%
and (12b) that U,y = Raand ¥,y = 0.

The final formulas for P, and P, are

Pin = {;ﬂphu—l = I'rﬂpr.n-l + Watn— {13&
and, similarly,
Prﬂ. = L't‘iP#.ﬂ.—l + IrtiPu.n--l + erxl—l . (I’Eh

Hence, if w, is of the type
w, = B, exp (—C.At) cos (Eit + F.),

the output signal ¥. can be ealeulated using the following simple recursion formi:
together with egs. (13a) and (12e):

yn=§P“+$n;Qﬂ- “‘E

[f we approximate the convolution integral using Simpson’s rule, we obtain a e
aceurate formula for P, , although more caleulations have to be performed af th
beginning of the iterations. :

b. Quadratic approrimation of the convolulion integral. The quadratic ApproE
mation (Simpson’s rule) distinguishes between the odd and the even samples. F
n. the number of samples, is odd, the interpolation between the first two samp¥
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{for m
even, the interpolation is

The quadratic approximat

always quadratic.

oy a—1l
Pl.-n = - Al Z hmzn'wr.n_m
3 m=t
and, similarly,
- o n—1
Ppn = Af z bmx-m?z'r,ﬂ—m
3 m=i
where for even n,
fﬂ..—'}, m = {,
b =41, m=246 --,n
12, m=1,3,5,---.n
and for odd n,
(075, m =0,
1125, m=1,
b =
1, m=23,57,--,"%
2, m=2,4,6,---,n

P.. will be expressed by the prior v

and, similarly,

AS in eq. (E), Wen

of the Convolution Integral

o n—3

Pp.:-z =Z Al Z E’mxmwf,ﬂ—'..'a--m y
3 m=0

" e A

Pt.n—ﬁ = -‘:ﬂr E huzmwu.ﬂ-ﬂ—m-
3  m=0

Wen = RaEESr!wr.n—-! - Ttﬂﬁr.n—ﬂ}

and

Wy =

with

Introducing these values
both even and odd n,

P, = Ra(8sPyn2 — TﬁPhPJ)4—§aﬂxm4wﬂ-k2¢kﬁmﬂ-

H» = exXp (_EG:M):

cos (2E,At),
sin (2E,Af).

S,

T.a

R 8.4, ne + T sWe n2)

67

— 0 and m = 1) is linear and between all other samples, quadratic. If n is

on of P, . and P, . can be written &3

(15a)

(15b)

2

vt

1.

alue P,ns, and not P, . We cap then write

{16a)

{16b)

can be expressed by the prior values w;.x-2 and %, -2 - Hence

(17a)

(17b)

(18a)
(18b)
(18¢)

into eq. (13) and considering eq. (16), we obtain for

Jou

5

enal of the Assceistion for Computing Machinery,
e

(19a)
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and, similariy,

(19b)

P“; = 1?1&{ igtfp.lq = == ?1‘.21"1- .ﬂ.-ﬂ-:f i %jﬂh} xn—“."l-?!‘ri + ‘21;:1—1'&'1'1}'

sl f the
he time-independent coelf .cients can be computed once ab the beginn1ng of the
iterations. They are:

£ i R B (20a)
Vo= R:Ta (200}
W = AW (20¢}
.. = 2ANEa (20d)
Y. = 340t (20e)
¥, = AL, (20f)
‘1/2
Q.. = boatws  be= i; ;:f::; {20g)
w,. = B, exp { —2C.Al) cos (2E.Al + F.)
w.- = H, exp ( —2C,At) sin (2E,at + F.)
‘he final formulas for P, and P, are
Pu= ol — ViaPons + Watas + Yoln (21a)
and, similarly,
P = Uabons + VaPuas + Wates + Yot (21b)
The output signal #a ean be computed by using eqs. (21a) and (20g);
Un = g Pe + Za il (e (22)
22 HRecursioN FORMULAS FOR Caskg 2
At { = n-A? the weighting function w."" has the value
w2 = BaP Al (23)
The next sample is
wemit = Be(n + 1)° AL, (24)

Equation {24) can be written in the following from by applying e Tainoxisl
SEries

P AT 3
Wensl = BAE ;ﬁ(p)ﬂ (25;
ar
wi o = ﬁ: (D') AL PulY
w=0 \ P
since
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Recurswve Formulas for the Evaluation of the Convolution Inlegral 69

w? = BaAP. (26)

Shifting the time index, we simply ge‘t

wos ( )M Eple . (97)

Let us now distinguish between '-:-he linear and the guadratic approximation of
the convolution.

a. L'imm' approximation of the convolution integral. The linear approximation
D) 3
for Pia’

n—l
1/ Dy e
P = At 2 Dot m 0o (28a)
=0
or
L
¥ i | . %
“:'; - Mbq-ij:n-—lwgln "l' ltz i’ﬂrn;i";,u—m - {25“’?
-

If we introduce eq. {27 into eq. (28h), we obtain
v n—2 Ly
P2 = Afhe iTewa” + Al Y buta §_‘, ( ):-.r*r—r ATV
=0 =
We now interchange the summation qgmhois and obtain:

P{B : = Mﬂn—lﬁ:ﬂ 'I.w:f' ( )M:‘I ?-‘Lf T L’-rJl' '&u:r n—'-'l.—-* : {29:}
r-—ﬂ

H

However, from eg. {28a) we have

(gl LB
P, = mE_}ub..xmw;’._l..n. (28d)
o

Knowing that bay = 1 and that we” = B A" (fram eq. ( 231}, we can write for
i, >0

D"‘ P =
PEJ:,,.T _ B,ﬂ.ﬁu F-H:r-,.:_; + 2: (JDI;) ﬁtu‘:'“PP;FJ“l ) {Eﬂ}
p=h
In order to evaluate eq. (30},
Iji::. PL n=1 I| B; MI.Q—-I
st be caleulated and then in consecutive order we must caleulate
P, = PB .- PRTY

using eq. (30). The output signal ¥ becomes

‘Z, (P2”) + za 2 s I (31)

=1

The ecomputational burden becomes rather extensive if D, is large. In this case it
may be more advantageous to perform lower ordar convolutions ﬂﬂq_uf:nt.m.ll}'
b. Quadratic approximation of the conolution. The formulas for the quadratic
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70 . H, TRAUBOI
approximation of the convolution can be easily derived by applving the knowledg
of Sections 2.1b and 2.2a. Since

wiBils = Bu(n 4+ 2)7a7, (32
by using the binomial <erics and shifting the time index, we can write

e = Z TS ("'; ) A" Pwlh) s (33)

p=i

If we introduce this equation into eq. (13a) and use eq. (16a), we obtain
D,
P = B4 AP g + 2aa) + 2 2”°HF(I;:=')!A:”““’PE,‘:,:'.~.= . (3
p:ﬂ

Hence the outupt signal u, is

4 A
Ya = _;; (P7) + 22 2 Qus. (33)

=L

The equations derived so far can be extended for the general case of w(f), 1-e. €
(3).

23. RecursioNy FoprMuLAs FOR THE GexeraL Case orF w(l)

The formulas Pia®’ for the general case of w(t) as deseribed by eq. (3) can be
arrived at by combining the formulas of Sections 2.1 and 2.2.

. Linear approzimation of the convolution. Applying the trigonometric additin
theorem for cosine and sine, and the binomial series for (n + 1}5', we can write

w's”’ = R, f_jﬂ (f; ‘)4.:""+“"(.sr,w£f.tl — Toabiha (38!
and, similarly,

Wen” = Ra :i:ﬂ (.i;,) ALY (Saieta + Tawtli) (36h)
with

wZ' = B.(nAl)? exp (—C.nat) cos (Emat + F.) (373}
and, similarly,

't = B.(nAt) exp (—C.mAl) sin (Eanat + Fo). (37b)

If we introduce ¢q. (36a) into eq. (92a) and eq. (36b) into eq. (9b}, we can write
Dy

Pi2” = B, cos (F )AL 'zay + Ra ,,E.:q (I; ‘)az”*"(SﬂPEi’_l - TaP{Z) (381 °

and, similarly,

- . [ Dy =

P2 = B, sin (F)A 2, + Ra 2 (j;t)ﬁtbrpfssf G+ TaPiR)y).  (38h)

=

If the time-independent coefficients

T = D, Dy i
Uap= (F) Al PR a8 a (392
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follows:

A A :
n = 7—-:' PO 4 3 0 (44,

=]

3. Sumimary

The computation of the cutput signal y, by formulas (41) and (44) requires con-
siderably fewer operations and much less storage space than is required to compute
%s by the general formula (eq. (2)). )

If we consider a transfer funetion having only single poles, i.e. D, = 0 in eq. (3b)
(which is the most frequently oceurring case). we compute i, by the recursion for-
mula (14) or (22). In thjs case the number of arithmetic operationg per time step
are eounted as follows,

If the linear approximation is used, six multiplications and four additions in eq.
(13) and one addition in eq. (14) must be performed per single complex pole, and
one multiplication and one addition regardless of the number of poles. If the quad-
ratic approximation is used, cight multiplications and six additions in eqg. (21) and
one addition in eq. (22) must be performed per single complex pole, and one muldi-
plication and one addition regardless of the number of poles. The number of multi-
plications and additions reduees for real poles since in this ease V,, and V.2 are both
2000,

Let us compare the number of operations and storage space necessary to compute
Ya by the two methods for onc thousand samples of a transfer funetion having iws
damped oseillations and one expenential funetion.

When the linear approximation is applied, the recursion formuls eq. (14) together
with eq. (13) requires (2 X 6 + 4 + 1)1000 = 17,000 multiplications and (2 X
9+ 3 + 1)1000 = 14,000 additions.

Only seven past values, i;‘—" By Py s Fl,,._l G W f"a.,._, plus the constant
parameters Uy, , Vy, , Wy, , W, , Oy, 3 Un, -+, O need to be stored. On the other
hand, the general formuls €. {2} requires approximately n X n/2, i.e. £00,000
multiplieations and additions, for n = 1000, and storage space for 1000 values of
z and w must be reserved.
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